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Abstract

Reinforcement learning with verifiable rewards (RLVR) has become a standard recipe for
improving large language models (LLMs) on reasoning tasks, with Group Relative Policy Opti-
mization (GRPO) widely used in practice. Yet GRPO wastes substantial compute on negative
groups: groups in which no sampled response is correct yield zero advantage and thus no gradi-
ent. We ask whether negative groups can be leveraged without extra supervision. Starting from
a maximum-likelihood (MLE) objective in reward modeling, we show that the MLE gradient
is equivalent to a policy gradient for a modified value function. This value function adds a
confidence-weighted penalty on incorrect responses, imposing larger penalties on more confident
mistakes. We refer to this as Likelihood Estimation with Negative Samples (LENS). LENS
modifies GRPO to assign non-zero, confidence-dependent rewards to incorrect generations, mak-
ing negative groups informative and converting previously wasted samples into useful gradient
updates. On the MATH benchmark with Llama-3.1-8B and Qwen-2.5-3B, the proposed variant
consistently outperforms GRPO baseline, with significant gains on harder items. These results
demonstrate a principled and practical way to “rescue” negative groups, improving efficiency
and performance in RLVR.

1 Introduction

Large language models (LLMs) fine-tuned with reinforcement learning and verifiable rewards (RLVR)
(Shao et al.l 2024; \Guo et al., 2025) have shown strong gains on complex reasoning tasks, with al-

gorithms such as Group Relative Policy Optimization (GRPO) (Shao et al.,|2024; /Guo et al., 2025)

emerging as practical defaults. A persistent inefficiency, however, is how these methods handle

negative groups—the generation group in which no sampled response is correct. In GRPO and its

variants, such groups contribute zero advantage and therefore no gradient signal. This is especially

common at the start of training and on harder reasoning problems, where negative groups can

constitute a substantial fraction of compute, effectively wasting already-generated trajectories.

We therefore ask: can we learn from negative groups without additional supervision in a prin-
cipled way? Our starting point is deliberately simple: to learn from negative groups, the natural
approach is reward modeling that distinguishes correct from incorrect answers, optimized with
maximum likelihood (MLE). From this likelihood perspective, the MLE gradient is equivalent to a
policy gradient on a modified RLVR value function. The modified value adds a confidence-weighted
penalty for incorrect responses: the more confident the model is in a wrong answer, the larger the
penalty. Intuitively, it discourages overconfident failure modes, thereby encouraging exploration of
lower-probability yet plausible alternatives.

This equivalence lets us modify GRPO directly. It yields a drop-in change in which incorrect
generations receive non-zero, confidence-dependent rewards (i.e., lower rewards when confidence is
higher). As a result, negative groups now provide informative advantage estimates, converting pre-
viously wasted samples into useful gradient updates and promoting exploration on hard negatives.
We term this algorithm LENS: Likelihood Estimation with Negative Samples.
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Figure 1: Overview of our approach. Standard approaches like GRPO assign a uniform reward
of 0 to all incorrect answers. This provides no learning signal, causing these samples to be dis-
carded. Our method, LENS, is derived from reward modeling via Maximum Likelihood Estimation
(MLE) and assigns non-zero, confidence-dependent rewards to incorrect responses. This creates a
clear learning signal where differences emerge from the samples, converting previously discarded
information into useful gradient updates.

We evaluate LENS on mathematical reasoning using the MATH benchmark with Llama-3.1-8B-Instruct
and Qwen-2.5-3B-Base. In both settings, our GRPO variant consistently outperforms the GRPO
baseline across all Pass@Qk metrics. Stratifying by difficulty, we find that gains are concentrated on
the Levels 4-5 subsets (hard items), consistent with repurposed negative groups driving increased
exploration for hard questions. We train on two distinct math training datasets to demonstrate
the generality of our method.

We summarize our contributions as follows:

e We introduce a likelihood framework, Likelihood Estimation with Negative Samples (LENS),
that explicitly connects reward modeling and policy optimization.

e LENS yields a principled value function whose additional term penalizes overconfident incor-
rect answers, formalizing how negative-group signals should be used and calibrated within
the objective.

e We propose a GRPO variant that assigns non-zero, confidence-dependent rewards to incorrect
generations, thereby leveraging negative groups rather than wasting them. It is plug-and-play
with negligible computational overhead.

e Empirical results support our algorithm’s effectiveness and show increased exploration, as
reflected in PassQk.

2 Related Work

RLVR. Recent work has shown that reinforcement learning (RL) can effectively refine LLMs for
reasoning. In RLVR, the LLM is treated as a policy that generates a chain-of-thought (CoT)
reasoning process, and it receives a deterministic reward based on whether the final answer can
be algorithmically verified. Recent works (Shao et al., 2024; |Guo et al. [2025; Team et al., 2025)



show that RLVR can elicit emergent reasoning behaviors and dramatically boost math and coding
performance compared to the base model. Underlying most of these RLVR methods is the Group
Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024). GRPO is an efficient variant
of Proximal Policy Optimization (PPO) (Schulman et al., [2017)) that drops the value network and
instead computes advantages from grouped outputs. In this way, with a group of all incorrect
generations, the advantage is 0, and these groups do not contribute to the optimization. In this
work, we try to make use of these negative groups.

Learning from negatives. Recent work has emphasized that negative samples are not merely
noise but a useful training signal in LLM reasoning. One direction explores asymmetric treat-
ment of positives and negatives in REINFORCE-style training: Roux et al.| (2025) introduce an
asymmetric variant of importance sampling to speed up learning. Arnal et al.| (2025) demonstrate
that asymmetric REINFORCE, and in particular reducing the signal from negative samples, can
be beneficial when data is off-policy. |Lyu et al.| (2025]) propose to reweight positive and negative
samples at the token level using a learned reward model combined with log-likelihood. [Zhu et al.
(2025) demonstrate that training only on negatives, assigning reward —1 to incorrect and 0 to
correct answers, can outperform baselines on Pass@¥k for large k.

Another line of work argues that entirely wrong completions may still contain valuable sub-
signals. |Chen et al.| (2025a)) assign fractional rewards within all-negative groups, |Yang et al.| (2025)
mine correct sub-steps from long chains of thought, and |Li et al.| (2024b) leverage negative ratio-
nales through a dual-LoRA distillation framework. These methods demonstrate that even within
incorrect trajectories, certain steps are worth reinforcing, particularly in long reasoning traces
where correct and incorrect steps alternate. A key drawback of these approaches is that evaluating
intermediate reasoning steps is labor-intensive, and accurate automation remains underexplored.

Our contribution is to provide a framework that stratifies reward signals within negative samples
using only outcome rewards and probability, balancing computational efficiency with the benefits
of learning from structured negatives.

3 Preliminaries and Motivation

We start with background on policy optimization and the motivation for our method.

3.1 Language Model Reasoning as Policy Optimization

We begin with a basic setting: given a question g € Q, a language model 7t is tasked with gen-
erating an answer o € 0. To evaluate correctness, we assume the existence of a reward function
r*: Q@ x O — {0,1}, which assigns 1 if the answer o is correct for the given question g, and 0
otherwise.

The ultimate goal of training the language model is to improve its accuracy rate. Formally, this
corresponds to maximizing the expected reward:

maximize, J(n) := E[r*(q,0)], where g ~ &, o ~71(- | q). (1)

Here ¢ denotes the distribution of questions. Equation is the central criterion: it asks us to
design a policy 7 that maximizes the expected correctness of generated responses.

3.2 DMotivation: Negative Groups in RLVR

In practice, Group Relative Policy Optimization (GRPO) has become a default algorithm for op-
timizing LLM reasoning ability for the objective in Equation . Concretely, for each verifi-



able question g, we draw a group of G candidates {0;}%; ~ 4 (- | q), obtain scalar rewards
ri :=1*(q,0;) € {0,1}, and form zero-mean, unit-variance group advantages

= r; —mean({r;};ca))
Y std({rite) @

With outcome-only rewards, the same advantage Ei,t = 7; is assigned to all tokens ¢ in response o;.
GRPO then maximizes a clipped PPO-style surrogate with an explicit per-token KL regularizer to
a fixed reference 7tqf:

|oi

1 . n . N
Z [mln(pi,tAi,t, clip(pig, 1 — €, 1+ €)Ait) }, (3)
t=1

Joi] &

G
1
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7014 (06,119,05, <) is the correction for off-policy samples. We omit the KL divergence

term following the common practice as g = 0.

GRPO is a practical policy-gradient method for LLMs because it computes advantages from
group-relative statistics rather than a learned value function (critic). This makes it simple and
robust for long-form reasoning, where sequences are long and rewards arrive only after a complete
solution.

where p;; : =
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Figure 2: Negative group ratio during GRPO training of Llama-3.1-8B-Instruct with MATH
and Numina 1.5. G = 16.

However, GRPO wastes substantial compute on negative groups. If an entire group is incorrect,
i.e., all rewards {r;} are zero, the advantages collapse to zero, yielding no contribution to the policy
gradient. Figure[2|shows the fraction of all-negative groups during training with group size G = 16:
despite 16 generations per prompt, nearly 45% of groups are all-negative early in training, and about
35% remain even by the end. These groups consume substantial generation compute yet contribute
no learning signal.

4 A Likelihood-Based Framework for Reasoning

We now seek to find a principled framework to use the negative groups. A direct route is reward
modeling: train a model to discriminate correct from incorrect responses. We develop a likelihood-
based formulation of reward modeling and show how it connects to policy optimization.



4.1 From Policy Learning to Reward Modeling

While our goal is to optimize the policy, the task becomes clearer when re-expressed through reward
modeling. To illustrate this connection, we turn to a simple multiple-choice example.

Illustrative Example: Multiple-Choice Reasoning. Suppose a single question g comes with
six possible answers: A, B,C, D, E, F. Out of these, only A and B are correct. We can think of an
unknown ground-truth probability function

p*(q,0) = ]P[Answer o is correct for question q].

For math problems, this function is deterministic: each answer is either correct (p* = 1) or incorrect
(p* = 0) and p* = r*. More generally, however, p* could take fractional values in [0, 1] to reflect
varying confidence or partial correctness.

In this example, the desirable optimal policy 7 for Equation is one that selects only from
the correct options. For instance:

T(Alq)=m(B|q) =35 m(Clq = =7(F|q) =0

This v randomly chooses between the correct answers A and B E] This relationship can be expressed
more generally as

P*(a,0) = —— (0| q), (4)

D(q)

where D(q) is a normalizing factor defined by

-1
D(q) = { Zp*(q,O)} : (5)

ocO

Intuitively, D(q) € (0,1] captures the difficulty of the question. If only one answer is correct,
D(q) = 1, indicating a hard question. If multiple answers are correct, D(q) becomes smaller,
signaling an easier question.

In practice, we do not have direct access to the full probability function p*. Instead, we observe
data samples of the form (g, o0,r), where r ~ Bernoulli(p*(q, o)). Reward modeling then fits a
model py to these observations to approximate p*. Through the relation in Equation (4)), we can
recover one optimal policy 7. Therefore, policy learning reduces to the statistical task of estimating
reward probabilities.

Maximum Likelihood Estimation (MLE) as the Learning Principle. Formally, suppose
we are given an i.i.d. dataset D = {(gq;, 0;,7;)}"_;. If we have an estimate of the difficulty D(q;) (as
defined in Equation (j5))), we can reparameterize the probability model as

po(g,0) = D;qycmo q), (6)

'"Here we select an optimal policy that chooses uniformly at random among all correct answers. In more general
settings we may have preferences over which correct answers to favor; for example, one might prefer shorter correct
answers to longer ones. We extend the framework to incorporate a preference function, as discussed in Appendix E}
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Figure 3: An optimal policy 7* is derived from reward probabilities p* through normalization
(see Equation ) This approach reframes the task of finding the best policy as a more straight-
forward statistical problem: learning a reward model from data.

where 7ty belongs to a parametric policy class. The straightforward way to solve py is through the
maximum likelihood (equivalently, cross-entropy minimization) objective:

L 10N
minimizey Lo(6) = - Z {ri -log po(gi, 0;) + (1 — ;) - log (1 — pe(ai, oi))}. (7)
i=1

Plugging in the reparameterization yields the equivalent form:

n

R o log 1te(0: | a ) o (1 ™eloi | 4)
minimizey L£(6) = n;{ i - logmg(o; | gi) + (1 —1ry) 1g<1 D(ar) )} (8)

This formulation makes explicit the bridge between policy learning and reward modeling: by
estimating p*, we implicitly learn a good policy 7y that maximizes accuracy.
4.2 Calibrating Policy Gradient via MLE.

We now turn to the algorithmic perspective: how can the maximum likelihood objective guide
policy gradient methods? Our first step is to analyze the gradient of the MLE loss. This is
summarized in Theorem [l

Theorem 1. The gradient of the log-likelihood E(O) with respect to the parameters 0 is given by

e N mleda) ) o
VL) = S {r () TS Ve lsrator @) (9

Comparison with Policy Gradient. For reference, the standard policy gradient expression for
maximizing the accuracy objective in Equation is

Vo J(m9) = E[r- Vg logmy(o | q)].

Classical algorithms such as REINFORCE, PPO, and GRPO are all built upon this form. In
practice, the raw reward r is often replaced by an advantage estimate A to reduce variance. However,
in GRPO, when all answers in a batch are incorrect (i.e., 7 = 0), the gradient contribution vanishes
entirely (after centralization). This explains why negative groups are typically discarded in existing
methods.



MLE Perspective. Theorem (1| sheds new light on this issue. The first term of the gradient,
ri- Vg logﬂg(oi ‘ qi),

matches the standard policy gradient signal: positive samples (r; = 1) encourage the model to
increase probability mass on correct answers.
But critically, the MLE gradient also contains an additional negative sample contribution:

m9(0; | qi)
qi) —1m(0; | qi

—(1—mry) D ) - Vg logmy(o; | qi)-
Although typically smaller in scale, this term is non-negligible when only negative answers are
observed, or when negative samples dominate the data. In other words, discarding negative groups
overlooks a legitimate part of the gradient revealed by the MLE formulation.

Calibrated Policy Gradient. Motivated by this observation, we propose a unified modifica-
tion to REINFORCE-type algorithms for LLM reasoning. Specifically, we replace the raw reward
r =1*(q,0) with a calibrated reward that incorporates both positive and negative contributions:

(o | q)

T=r 0 B (o)

(10)

When the generation is correct (r = 1), the calibrated reward is unchanged: 7 = r = 1. The
adjustment applies only to incorrect samples. In negative groups, r = 0 for every candidate,
but the policy confidences my_ (o | q) differ; consequently, the adjusted rewards 7 also differ
across candidates, reflecting their relative confidence. This ensures that negative groups contribute
informative gradients rather than being discarded, thereby yielding a more statistically principled
update rule.

We provide the proof and show that the estimator is consistent in Appendix if the model
is correctly specified (i.e., ™ = 7y~ € {my}gco), then the true parameter vector §* is a maximizer
of the population log-likelihood.

4.3 Confidence Weighted Value Function

After introducing the calibrated policy gradient, we can interpret it as solving a modified policy
optimization problem with a redefined value function Jypg(7y). The next theorem formalizes this
perspective: in the on-policy setting, the MLE gradient coincides with the gradient of this specially
constructed value function. The proof is deferred to Appendix

Theorem 2. If we collect dataset D according to q; ~ & and 0; ~ my(- | q;), then the gradient
of the (population) log-likelihood function L(0) is identical to the gradient of the following value
function Jyrg(my):

maximizeyp JMmLE(Tg) = J4(m9) — J_(19) s (11)
where
T+ (1) 1= Egt, onmy(lg) [7(4,0)] (12a)
J(70) = Byut oumyla) |0 (mo(o | a)/D(@) {1 - 1*(a,0)}]. (12b)
Here the weight function w(-) is defined as
w(z):z%logliz—l for any 0 < z < 1. (13)
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Figure 4: Ilustration of the weight function w(z).

This formulation provides insight into the behavior of the MLE optimizer. The objective
JMLE(T) balances two components:

J4+(1p): This is the standard policy gradient objective (REINFORCE), which maximizes the ex-
pected reward. It encourages the policy my to take actions (i.e., propose answers o) that are
likely to be correct.

J_(mp): This term acts as a penalty for incorrect answers. The cost of being incorrect, 1 — r*, is
re-weighted by w(7g(o | ¢)/D(q)), which represents the policy’s own “odds” of its prediction
being correct. The penalty is most severe when the policy is highly confident but wrong (as
My — D_, w — o0). Conversely, the penalty is negligible when the policy is uncertain and
wrong (as mp — 04, w — 0). It encourages diversity in the negative responses / exploration
in the negative space.

The objective Jypgp(7y) creates a powerful dynamic. It not only drives the policy to maximize
rewards but, more critically, it uses the penalty term J_(7y) to enforce “principled exploration”.
By penalizing misplaced confidence, the agent is forced to explore diverse responses rather than
exploiting a potentially flawed understanding. This balance between exploitation and exploration
is essential for learning a well-calibrated policy.

5 Proposed Modification to GRPO

The likelihood framework naturally led to a theoretically-grounded modification to GRPO’s advan-
tage function, directly incorporating the insights from the Jypg(mg) = J4(19) — J_(719) objective
to enhance exploration and policy calibration. The core of our proposal is to replace the original
reward with our adjusted reward r from Equation . The adjusted reward directly implements
the gradient of our theoretical objective. The calibrated reward is then normalized and the obtained
advantage is used in Equation . We do not modify the GRPO loss function.



5.1 Implementation and Practical Considerations

We calibrate rewards using the ratio # which requires careful handling, particularly in how
old

the probability my_,, and the difficulty factor D(q) are estimated and used.

old

Mg, Term. For LLMs with long generations, raw sequence probabilities are dominated by length:
per-token probabilities tend to be of similar magnitude, so the sequence probability decays roughly
as ~l°l for some v € (0,1). Consequently, plugging 7y, in directly makes the adjustment sparse:
length-driven decay pushes most candidates’ terms to 0, while a single dominant candidate gets a
much larger value. To mitigate this, we use the length-normalized (geometric-mean) probability
Toga(0 @) 1= mg,,(0 | q)l/‘ol-

In Appendix [C] we show that our likelihood framework naturally generalizes to incorporate prefer-
ences over correct generations (e.g., in the example in Section we can make (A | g) = p(q, A)
and (B | q) = p(g, B), rather than 0.5 and 0.5); empirically, the above substitution is equivalent
to a calibrated reward that encodes a length preference for correct generations.

Estimating D(q). The true difficulty function D(q) (as defined in Equation (5])) is unknown and
acts as a key hyperparameter controlling learning dynamics. Smaller D(q) increases the penalty on
confident but incorrect predictions, encouraging broader exploration to avoid overconfidence. This
mechanism allows tuning between exploiting correct answers and exploring uncertain ones.

A direct estimator follows from importance sampling;:

i) ={ e 10} —ren [EE] (G g

o'e0 i=1

In this formulation, we approximate the expectation with a Monte Carlo average over a group of
G samples {(0;,7;)}$, drawn from 7y, .

For numerical stability, we should conservatively overestimate D(q) so that the denominator
D(q) — 7y, is positive and well-conditioned. Concretely, over the G candidates in the group we
set

D(g) = masx(Dinp(q). 2+ max 7, (0; | 0)).

which keeps the calibrated rewards in [—1, 1].
Dimp(q) is undefined for negative groups as all r; are zero. In that case we fall back to

D(q) = 2+ max m,,(0i | @)-

Handling Invariance. GRPO’s group-wise normalization enjoys a useful sign invariance:
regardless of how many generations are correct, after normalization all incorrect generations have
negative advantages and all correct generations have positive advantages. We aim to preserve this
property under our calibration. Consider the extreme mixed group with one correct and G — 1
incorrect generations; the calibrated rewards might look like [1,0,—1,...,—1]. To maintain sign
invariance, we scale all negative calibrated rewards by 1/G.

Calibrated Reward (per sample). In combination, our calibrated reward is

l 77[901d (07* ’ q)
G D(q) — 7tg,4(0i | @)’

Fi =Ty — (1—7'7;)




with
D(q) max<D imp(q), 2 - max; 7o, (0; | q)>7 (mixed group),
q =
2 max; 7y, (05 | q), (negative group).

Final Objective. In negative groups, the only signal comes from confidence differences rather
than a verifiable reward, so we treat it as a weaker, auxiliary signal. For those groups we use
de-meaning only in the normalization for simplicity, and we introduce the only hyperparameter, «,
to down-weight their contribution:

Jows = Jgrpo[mixed groups] + « - Jgrpo|negative groups].

6 Experimental Results

We now empirically test the effectiveness of our algorithm.

Set-up. We evaluate our method on mathematical reasoning. We conduct training on the
MATH training split combined with Numina 1.5 (Li et al. 2024a). All evaluations are on the
MATH test set. We consider two models, Llama-3.1-8B-Instruct (Dubey et al., 2024) and
Qwen-2.5-3B-Base (Yang et al.,[2024) P| and compare our method against the baseline GRPO. To
further test for generality, we also examine training on the DAPO (Yu et al., 2025a) dataset and
report details and results in Appendix

Training protocol. To stress-test learning from negative groups, we use a possibly large G and
sample 16 completions per question. Each gradient update uses a global batch of 512 trajectories
(32 questions x 16 samples). We decode with temperature 1.0 and cap generations at 4,096 tokens.
We do not add any KL regularization following common practices. The negative ratio « is set to
0.25 for all models. No format rewards are added to the scalar reward.

Evaluation. At evaluation time, we use temperature 1.0 and top-p 1.0 to evaluate the model in
the plain setup as training, and report PassQk for k € {1,2,4,8,16}. We present evaluation curves
during training for both the full MATH dataset, and the MATH Levels 4-5 subset to understand
the performance on hard questions. We use Math-Verify (Kydlicek, 2025) as the verifier function
for both training and evaluation.

Results. We report training curves for Llama and Qwen in Figure[5] The full training results are
in Appendix [E] Across both models, LENS consistently attains higher accuracy than the GRPO
baseline throughout training. On the hard split of MATH, LENS shows substantial additional
gains, indicating that the method effectively converts negative groups, which often correspond to
hard instances where no candidate is initially correct, into useful learning signals. As a result, when
the GRPO curve saturates, LENS continues to improve. These results indicate that our method
learns effectively through exploration and explicitly leverages negative groups, yielding stronger
performance on difficult problems. Moreover, training remains stable for >1,000 steps without ad
hoc tricks or collapse. Training results using DAPO training set are included in Appendix [E] where
we observe consistent improvements with identical hyperparameters.

We further report Pass@k in Table[l] Compared with the GRPO baseline, LENS achieves higher
Pass@k for k € {1,2,4,8,16}, with the improvement at Pass@16 also significant. These results
indicate that our algorithm consistently improves Pass@k for all k, rather than only Pass@1, and
that its confidence-based design enables these exploration gains. Appendix presents ablations

2Following prior work, we apply RL to the Qwen base model (Liu et al. [2025b), which already follows instructions
and produces outputs in the required format, whereas for Llama we use the instruction-tuned model (Arnal et al.
2025). This allows us to remove the format reward in RLVR.

10
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Figure 5: Comparison of our algorithm and GRPO baseline: performance on the full MATH test
set and the Levels 4-5 (hard) subset. Top: Llama-3.1-8B-Instruct; bottom: Qwen-2.5-3B-Base.
The accuracy is averaged over all 16 generations during the evaluation. Owur algorithm brings
improvement for both models.

that separately evaluate the effect of adjusted rewards in mixed and negative groups, showing
strong improvements from negative groups alone.

7 Discussion

In this paper, we start from an observation. In GRPO, any generation group in which all sam-
ples are incorrect does not contribute to the optimization, even though these generations already
consume substantial compute. We ask a question: can we use this data in a principled way? We
develop a theoretical framework that begins with reward modeling using both positive and neg-
ative data, connects it to policy optimization, and shows that the MLE objective corresponds to
an adjusted value function. The adjustment adds a confidence-weighted penalty for incorrect gen-
erations. This view yields a calibrated reward that fits seamlessly into GRPO. Empirically, we
demonstrate effectiveness on both Llama and Qwen models, with improvements across all Pass@k
scores.

Our empirical algorithm builds on the connection between reward modeling and policy optimiza-
tion, and the framework can also incorporate preference, as shown in Appendix [C} We study the
simple case and leave further exploration of preference-aware variants for future work. To balance
the impact of negative groups and mixed groups, we introduce a single tunable hyperparameter. A
natural direction is to quantify the contributions of both sources in theory and design an objective

11



Table 1: Pass@Fk results on MATH with Llama-3.1-8B-Instruct and Qwen-2.5-3B-Base.

Model ‘Algorithm ‘Pass@l Pass@2 Pass@4 Pass@8 Pass@16

GRPO baseline | 56.88 65.42 72.08 78.34 82.80
LENS (Ours) 58.64 66.08 T73.98 79.46 83.40

GRPO baseline | 65.88 72.39 77.82 82.05 85.13
LENS (Ours) 68.46 74.74 79.75 83.54 86.28

Llama-3.1-8B-Instruct

Qwen-2.5-3B-Base

that is free of hyperparameters. Our framework also covers nonbinary reward signals theoretically,
and we defer a systematic experimental study of this setting to future work.

References

Charles Arnal, Gaétan Narozniak, Vivien Cabannes, Yunhao Tang, Julia Kempe, and Remi Munos.
Asymmetric reinforce for off-policy reinforcement learning: Balancing positive and negative re-
wards, 2025. URL https://arxiv.org/abs/2506.20520.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale
Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified
approach to online and offline rlhf. arXiv preprint arXiv:2405.19320, 2024.

Peter Chen, Xiaopeng Li, Ziniu Li, Xi Chen, and Tianyi Lin. Spectral policy optimization: Coloring
your incorrect reasoning in grpo. arXww preprint arXiw:2505.11595, 2025a.

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
Pass@ k training for adaptively balancing exploration and exploitation of large reasoning models.
arXw preprint arXiv:2508.10751, 2025b.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
Furu Wei. Reasoning with exploration: An entropy perspective. arXiv preprint arXiv:2506.14758,
2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Yunzhen Feng, Ariel Kwiatkowski, Kunhao Zheng, Julia Kempe, and Yaqi Duan. PILAF: Optimal
human preference sampling for reward modeling. In Forty-second International Conference on
Machine Learning, 2025.

Jingtong Gao, Ling Pan, Yejing Wang, Rui Zhong, Chi Lu, Qingpeng Cai, Peng Jiang, and Xi-
angyu Zhao. Navigate the unknown: Enhancing llm reasoning with intrinsic motivation guided
exploration. arXiv preprint arXiv:2505.17621, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiw:2501.12948, 2025.

12


https://arxiv.org/abs/2506.20520

Hynek Kydlicek. Math-Verify: Math Verification Library, 2025. URL https://github.com/
huggingface/math-verify.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
aldmaths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024a.

Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence
is all you need: Few-shot rl fine-tuning of language models. arXiv preprint arXiv:2506.06395,
2025.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, Bin Sun, Xinglin Wang, Heda Wang, and
Kan Li. Turning dust into gold: Distilling complex reasoning capabilities from llms by leveraging
negative data. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
18591-18599, 2024b.

Wei Liu, Siya Qi, Xinyu Wang, Chen Qian, Yali Du, and Yulan He. Nover: Incentive training
for language models via verifier-free reinforcement learning. arXiv preprint arXiv:2505.16022,
2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025b.

Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
Shuaibin Li, Qian Zhao, Haian Huang, et al. Exploring the limit of outcome reward for learning
mathematical reasoning. arXiv preprint arXiv:2502.06781, 2025.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025. [15]

Nicolas Le Roux, Marc G. Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves, Alex
Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sdndor Toth, and Sam Work. Tapered
off-policy reinforce: Stable and efficient reinforcement learning for llms, 2025. URL https:
//arxiv.org/abs/2503.14286.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024. [1§]

Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and Rémi Munos. Optimizing language models for
inference time objectives using reinforcement learning. arXiv preprint arXiv:2503.19595, 2025.
1!

13


https://github.com/huggingface/math-verify
https://github.com/huggingface/math-verify
https://arxiv.org/abs/2503.14286
https://arxiv.org/abs/2503.14286

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin,
Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang,
Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and Zekun
Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024.

Zhaohui Yang, Yuxiao Ye, Shilei Jiang, Chen Hu, Linjing Li, Shihong Deng, and Daxin Jiang.
Unearthing gems from stones: Policy optimization with negative sample augmentation for llm
reasoning. arXiv preprint arXiv:2505.14403, 2025. [3]

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiwv preprint arXiw:2503.14476, 2025a.

Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan
Yao, Zhiyuan Liu, et al. Rlpr: Extrapolating rlvr to general domains without verifiers. arXiv
preprint arXiw:2506.18254, 2025b.

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Han Zhong, Zhihan Liu, Ziyi Yang, Shuohang Wang,
Hany Hassan, and Zhaoran Wang. Self-exploring language models: Active preference elicitation
for online alignment. arXiv preprint arXiv:2405.19352, 2024.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025.

Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li,
Zhoufutu Wen, Chenghua Lin, Wenhao Huang, et al. First return, entropy-eliciting explore.
arXiv preprint arXw:2507.07017, 2025.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025. [15]

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
effectiveness of negative reinforcement in llm reasoning. arXiv preprint arXiv:2506.01347, 2025.

B I8

14



A Other Related Works

Ezxploration in RL. Enhancing exploration during RL training is an important part for all RL
algorithms. In RLHF, Xie et al.| (2024)); |Cen et al. (2024)); |Zhang et al. (2024) use the base
model likelihood as an exploration bonus, nudging the policy toward outputs that are plausible yet
seldom sampled. Closest in theoretical spirit to our view is [Feng et al.| (2025)), which studies the
MLE objective of reward modeling to derive a principled exploration method. In the reasoning
setting, (Gao et al. (2025) employ Random Network Distillation (Burda et al., 2018) to encourage
novel solution traces. Other works (Cheng et al., 2025, Zheng et al., 2025 promote exploration
through entropy based objectives. Finally, Chen et al.| (2025b) optimize a pass@k objective (Tang
et al. 2025)) to increase batch diversity during training. However, these approaches do not propose
to differentiate rewards inside negative groups and focus mainly on mixed groups.

Asymmetric treatment of positive and negative outputs. A few recent work introduce asymmetric
treatment of positive and negative generations during REINFORCE-style training. (Roux et al.,
2025)) introduces an asymmetric variant of importance sampling to speed up learning. Arnal et al.
(2025) demonstrate that asymmetric REINFORCE, and in particular reducing the signal from
negative generations, can be beneficial when data is off-policy.

Using Confidence in RLVR. Confidence proxies have also been applied in RLVR, mainly pro-
posed as a surrogate for the rule-based verifier. [Zhao et al.| (2025]) use the KL divergence between
the per token generation probability and a uniform distribution. [Zhou et al,| (2025); |[Yu et al.
(2025b)); Liu et al.| (2025a) take the log prob of generating the reference answer conditioned on the
existing CoT as the reward. |Li et al.| (2025) leverage confidence scores at test time for light tuning
and report gains. [Prabhudesai et al. (2025) similarly optimize the entropy of response tokens as
the reward. In all of these studies, the rule-based reward is replaced with a confidence-based proxy
and light training is performed. Most works do not train beyond one hundred steps and focus only
on Qwen models, which raises concerns about generalization and the risk of reward hacking without
a bag of tricks. In contrast, we do not aim to replace rule based rewards; instead, we propose to
make use of negative groups in GRPO in a principled way. We demonstrate effectiveness on both
Llama and Qwen and show stable training for more than one thousand five hundred steps.

B Proofs

B.1 Proof of Theorem [

We now provide the proof of Theorem [I| and a comment on the estimator consistency.

Proof of Theorem Let 9y = my(0 | q) and D = D(q) for notational brevity. The gradient of
each individual term in the loss £(6) with respect to 6 is found using the chain rule:

1—
Vo [r-logﬂ9+(1—r)~log<1—7;>] = <7:9—D_7:0>V97c9.

By applying the identity for the gradient of a logarithm, Vg g = 1y - Vg log 119, we can express the
result as:

Tty
—(1-— 1
(7“ ( V“)D_m))Ve og Ty ,

which provides the final result.
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Consistency of the Estimator. A key property of this estimator is its consistency under ideal
conditions. If the model is correctly specified (i.e., mp« € {mp}gco), then the true parameter
vector 6* is a maximizer of the population log-likelihood. This can be verified by observing that
the gradient Vg £(0) evaluates to zero at § = #*. By taking the conditional expectation of the
gradient’s inner term with respect to r, given g and o, we find:

79+ (0 | q)
D(q) —mg+(0 | q)

Using E[r | g,0] = p*(o | @) and the definition p* = v*/D, this becomes:

Er|q7o T — (1 — ’l“)

Tlo*
D — Tlg*

:*_1_* :*_1_*
p—(1—p") P p)l_p*

Since the conditional expectation of the term multiplying Vy log my is zero, the full expectation is
zero, confirming that 6* is a stationary point.

B.2 Proof of Theorem [2

We will show that Vg Jypg(7g) is equivalent to Vg £(6) when p = 7.
First, the target gradient from Theorem |1} with the sampling policy pu set to the model policy
Ty, is:

Vo L(6)]

79
s = Eartomtia| {7 =0 5™} Vo logmbo @) (19

Next, we rigorously compute the gradient of J(mg) = J4(my) — J_(mp). The gradient of the
positive term is standard:

V@ J+(7T9) = Eq~g7 o~y (-|q) [7" . V@ log 7'[9] . (16)
For the negative term, J_(79) = Eon, [w(19/D) - (1 — )], we use the product rule and derive
Vo J_(19) = Eg,onm, {(1 —r)(w(mg/D) + (1t9/ D) - w'(1/ D)) - Vg logm;} - (17)
Now we compute w(z) + z - w'(2):

—log(1 — 2) 7= + Dlog(1 - 2) 1 _Z
—, 1)+ > -1=

w(z) + 2z w'(2) = <

This is exactly the term we needed. Substituting this result back into the gradient for J_(719):

Vo J_(m9) = Eq o [(1 ) (DT_[‘)M) -V log 7'(9:| . (18)

Finally, combining the gradients for the positive and negative parts of J(7p):

T
Vo JMLE(TCQ) =V J+(7’[9) -V J_ (7’[9) = Eq,,o~7tg [(7“ — (1 — T')D _97-[0) - Vg log 7'[9] . (19)

This expression is identical to the MLE gradient in equation The equivalence is proven.
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C A Preference-Aware Framework

The framework introduced in Section assumed that when multiple answers are correct, the
optimal policy distributes probability mass uniformly across them. For example, if both A and B
are correct answers to a question g, we had (A | q) = (B | q) = 0.5. However, uniformity
may not always reflect the true reasoning process. In practice, we might prefer some answers over
others. For instance, A could be easier to infer, shorter in form, or more natural to express. In
such cases, a more realistic distribution might be (A | ¢) = 0.9 and (B | q) = 0.1.

From the perspective of chain-of-thought reasoning, preferences can capture properties such as
the length of the reasoning trajectory or the similarity of an answer to outputs from a reference
language model. To encode this flexibility, we introduce a nonnegative preference function:

p(g,0) > 0,
which adjusts the weight assigned to each (g, 0) pair.

Modified Framework. With the preference function, we adjust the relation between policy g
and correctness probabilities. Specifically, we define

1
Dla) pla.0) (0 | q), (20)

where the difficulty factor D(q) is updated as

Po(q;0) =

-1
D(q) = { > p*(g,0) - plq, 0)} : (21)

ocO

Intuitively, D(q) still measures how hard the question is, but it now accounts for the internal
weighting across candidate answers.
The maximum likelihood estimation (MLE) problem under this new framework becomes

n

0 ) = | . | (0 | gi)
min £(6) _—n;{n.mgn@(o@ | g)+ (1—r;) - log (1— D(qi)'p(qi’oi))}. (22)

The corresponding gradient of the log-likelihood is

A 1 m9(0i | i)

Vo L(0) = —— {r‘ — (1= -V logmy(o; | q;). 23

©) ; = =) D(q:) - p(gi,0i) —mg(0i | i) (01 | ) (23)

Compared to the uniform case, the gradient now incorporates the additional signal encoded by

p, ensuring that both positive and negative samples are scaled according to the chosen preference
structure.

Examples of Preference Functions. To illustrate the flexibility of this framework, we describe
some concrete choices of p:

Preference as the data collection distribution. Suppose we take p(q,0) = p(o | q), where p is
the distribution used to collect the dataset D. Then the difficulty factor D(q) can be approximated
by:

-1
1 *
D(Q)“{M Z r (q,o)} )

0c0p(q)
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where Op(q) denotes the set of observed answers to question g in D. In words, D(q) can be
estimated as the inverse of the empirical correctness rate.

Preference as the policy itself. If we further set @ = 7y, then the negative calibration term
simplifies to

m9(0; | q;) 1

D(q;) - p(gi;0i) —m9(0; | @i)  D(qi) —1

In this case, the weight for negative samples is exactly the correction rate of the current policy
my. Equivalently, in the ordinary policy gradient formulation, each question should be reweighted
by its correction rate. Although this choice does not produce the “confidence-based” weighting we
ultimately seek, it highlights that commonly used uniform weights (e.g., |Arnal et al.| (2025); [Zhu
et al.| (2025)) emerge as a special case of our framework.

Preference as a function of response length. Now, consider a preference function that depends
on the length of the candidate answer:

p(q,0) := ~l° for a fixed parameter v € (0, 1).
Define the shorthand
1

mig(o| q) := m(o | g)lel.
The negative-sample reward can then be expressed as

re(o]q) = — uical) = - Tolo] )
D(q) - p(q,0) —my(0 | q) D(q) -~ylel —my(o | g)lo”

1
For large |o|, we have D(q)lel ~ 1. If -y is chosen on the same scale as 7y, this weight simplifies

coley - _[(P@F el T 1 D@y )
ool a) = {(moq)) 1} ~ |0|{7T9(0|Q) 1}

1 (o | q) ~ _ L _To]q)

ol D(q)"T -y — (0 | q) lo] y—Tg(o]q)’

Therefore, in practice, it is convenient to set negative-sample reward

to

1

7 1 (o 1 (o] q)e
ool q) = —._meld 1 melaF
lo| v —p(o] q) ol 3 oo | )

with v > 0 properly tuned.

D Experiment Details

D.1 Hyperparameters

We use a learning rate 3e—7 for Llama-3.1-8B-Instruct and a learning rate 1le—6 for Qwen-2.5-3B-Base.
The base model requires a larger learning rate while the instruct model has gone through the RLHF
stages so a smaller learning rate is better. Prior works (Zhu et al. 2025; |Arnal et al 2025) have

used the same setup. The batch size is set to be 512, with 32 questions and 16 generations for each.

We use a clipping ratio of 0.2 for all the models to mitigate the impact of off-policy data. We set

the maximum number of off-policy updates to 4; in VeRL (Sheng et al., 2024)), this is implemented

by using a training batch size as 128 (4x32).

We set temperature and top-p to 1.0 during both training and evaluation for both models.
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D.2 Ablation

We also conduct an ablation to understand where the improvement comes from. In our algorithm,
we modify the reward for all incorrect generations in both mixed and negative groups as in Equation
Compared with GRPO, we adjust rewards for incorrect generations within mixed groups, and
negative groups now have nonzero advantages. To quantify the contribution of each component, we
use the Llama model and consider two settings: (i) modify only the incorrect generations in mixed
groups while keeping advantages for negative groups at zero, and (ii) modify only the incorrect
generations in negative groups while leaving mixed groups unchanged. This design isolates the
effect of each part. We refer to these variants as LENS with only mized groups and LENS with only
negative groups. The training set is MATH and Numina 1.5. The pass@k results are reported in
Table 21

Table 2: Ablation results of pass@k on MATH with Llama-3.1-8B-Instruct.

Algorithm Pass@l Pass@2 Pass@4 Pass@8 Pass@16
GRPO baseline 56.88 65.42 72.08 78.34 82.80
LENS with only mixed groups 57.42 65.82 73.08 78.80 83.20
LENS with only negative groups | 58.14 66.48 73.46 79.79 83.40
LENS (Ours) 58.64  66.08 73.98 79.46  83.40

The results show that both components help improve performance. Specifically, adjusting the
reward in mixed groups encourages exploration in batches that already contain a correct answer.
This helps the model reinforce correct samples while rejecting incorrect generations. As a result,
LENS with only mized groups yields its largest gains at pass@Ql. LENS with only negative groups
also improves over GRPO and in several cases nearly matches the full LENS, suggesting that a
substantial portion of the improvement arises from the negative groups.

E Additional Results

We report additional results from two training setups using distinct corpora: (i) MATH + Nu-
mina 1.5 and (ii) DAPO. These complementary results, omitted from the main paper for space, are
summarized as follows. Figure[6|shows training curves for L1lama trained on DAPO and Qwen trained
on MATH and Numina 1.5. Table [3|reports the Pass@ k results for the DAPO-trained models. On
this training set, we significantly improve PassQk for larger k, indicating greater diversity.

Table 3: Pass@k results on MATH with Llama-3.1-8B-Instruct. Training set: DAPO.

Model ‘Algorithm ‘Pass@l Pass@2 Pass@4 Pass@8 Pass@16

Llama-3.1-8B-Instruct

GRPO baseline
LENS (Ours)

53.80
54.90

61.04
63.03

67.30
69.47

71.36
74.36

74.54
77.95
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Figure 6: Comparison of our algorithm and GRPO baseline on MATH, during training: perfor-
mance on the full test set and the Levels 4-5 (hard) subset. Llama-3.1-8B-Instruct trained on
DAPO. The accuracy is averaged over all 16 generations during the evaluation. Our algorithm
brings significant improvement for both models.
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